Sequential activation of muscle synergies during locomotion in the intact cat as revealed by cluster analysis and direct decomposition.
نویسندگان
چکیده
During goal-directed locomotion, descending signals from supraspinal structures act through spinal interneuron pathways to effect modifications of muscle activity that are appropriate to the task requirements. Recent studies using decomposition methods suggest that this control might be facilitated by activating synergies organized at the level of the spinal cord. However, it is difficult to directly relate these mathematically defined synergies to the patterns of electromyographic activity observed in the original recordings. To address this issue, we have used a novel cluster analysis to make a detailed study of the organization of the synergistic patterns of muscle activity observed in the fore- and hindlimb during treadmill locomotion. The results show that the activity of a large number of forelimb muscles (26 bursts of activity from 18 muscles) can be grouped into 11 clusters on the basis of synchronous co-activation. Nine (9/11) of these clusters defined muscle activity during the swing phase of locomotion; these clusters were distributed in a sequential manner and were related to discrete behavioral events. A comparison with the synergies identified by linear decomposition methods showed some striking similarities between the synergies identified by the different methods. In the hindlimb, a simpler organization was observed, and a sequential activation of muscles similar to that observed in the forelimb during swing was less clear. We suggest that this organization of synergistic muscles provides a means by which descending signals could provide the detailed control of different muscle groups that is necessary for the flexible control of multi-articular movements.
منابع مشابه
Investigation of Muscle Synergies Using Four Different Methods of Synergy Extraction While Running on a Treadmill in Beginner Runners
Introduction: The study of muscle synergy is a new way to evaluate the functioning of the human body's control system. Different mathematical methods are used to extract muscle synergies from electromyographic data, and this factor can cause different outputs in muscle synergies. Therefore, the aim of this study was to investigate muscle synergies using four different synergy extraction methods...
متن کاملMotoneuronal and muscle synergies involved in cat hindlimb control
23 We compared the activity profiles and synergies of spinal motoneurons recorded during 24 fictive locomotion evoked in immobilized decerebrate cat preparations by midbrain stimulation 25 to the activity profiles and synergies of the corresponding hindlimb muscles obtained during 26 forward level walking in cats. The fictive locomotion data were collected in the Spinal Cord 27 Research Centre,...
متن کاملCritical Points and Traveling Wave in Locomotion: Experimental Evidence and Some Theoretical Considerations
The central pattern generator (CPG) architecture for rhythm generation remains partly elusive. We compare cat and frog locomotion results, where the component unrelated to pattern formation appears as a temporal grid, and traveling wave respectively. Frog spinal cord microstimulation with N-methyl-D-Aspartate (NMDA), a CPG activator, produced a limited set of force directions, sometimes tonic, ...
متن کاملMotoneuronal and muscle synergies involved in cat hindlimb control during fictive and real locomotion: a comparison study.
We compared the activity profiles and synergies of spinal motoneurons recorded during fictive locomotion evoked in immobilized decerebrate cat preparations by midbrain stimulation to the activity profiles and synergies of the corresponding hindlimb muscles obtained during forward level walking in cats. The fictive locomotion data were collected in the Spinal Cord Research Centre, University of ...
متن کاملSequential activation of motor cortical neurons contributes to intralimb coordination during reaching in the cat by modulating muscle synergies.
We examined the contribution of the motor cortex to the control of intralimb coordination during reaching in the standing cat. We recorded the activity of 151 pyramidal tract neurons (PTNs) in the forelimb representation of three cats during a task in which the cat reached forward from a standing position to press a lever. We simultaneously recorded the activity of muscles in the contralateral ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neurophysiology
دوره 96 4 شماره
صفحات -
تاریخ انتشار 2006